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Abstract. Two new computational models show that the EEG distinguishes 
three distinct mental states ranging from alert to fatigue. State 1 indicates 
heightened alertness and is frequently present during the first few minutes of 
time on task. State 2 indicates normal alertness, often following and lasting 
longer than State 1. State 3 indicates fatigue, usually following State 2, but 
sometimes alternating with State 1 and State 2. Thirty-channel EEGs were re-
corded from 16 subjects who performed up to 180 min of nonstop computer-
based mental arithmetic. Alert or fatigued states were independently confirmed 
with measures of subjects’ performance and pre- or post-task mood. We found 
convergent evidence for a three-state model of fatigue using Bayesian analysis 
of two different types of EEG features, both computed for single 13-s EEG ep-
ochs: 1) kernel partial least squares scores representing composite multichannel 
power spectra; 2) amplitude and frequency parameters of multiple single-
channel autoregressive models. 

Keywords: EEG, mental fatigue, alertness, computational models, situation 
awareness, performance monitoring, augmented cognition. 

1   Introduction 

There are countless high-risk occupations today, such as in aviation, transportation, 
aerospace, military, medicine, and industrial settings, in which fatigued individuals 
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routinely operate complex, automated systems. This undesirable state of affairs has 
contributed to more than a few well publicized—and many not so well publicized—
disasters [1].  Recent analyses of crash data confirm that fatigue and inattention pose 
the greatest known risks to automobile driver and passenger safety, surpassing all 
other known risks including alcohol and secondary tasks such as cell-phone usage [2]. 
Accordingly, there continues to be much scientific interest in assessing, monitoring, 
and predicting fatigue [3],[4],[5],[6]. 

The risk of errors or accidents in such jobs could be reduced with the aid of auto-
mated systems that detect, diagnose and mitigate occupational fatigue. Designs for 
such automated fatigue-monitoring systems, or AFMS, have been proposed, and their 
accuracy in research settings has increased dramatically in the last few years. It is 
highly probable that AFMS will soon be reliable enough for general deployment. Fu-
ture AFMS may even predict the likelihood of fatigue seconds to minutes before its 
onset. Most AFMS designs combine physiological or behavioral measures, such as 
brain activity (EEG), cardiac measures, eye-tracking, pupil size, lid closure, head tilt, 
or muscle activity (EMG), with intelligent computational systems to estimate present 
levels of fatigue.  Of all these measures, the EEG may be the most informative meas-
ure of fatigue, because it is directly related to neuronal activity in the cerebral cortex 
and is also the key clinical method used for automated classification of sleep stages, 
which are related to some aspects of fatigue.  

Researchers interested in using EEG features to classify mental activity have typi-
cally administered a stimulus, recorded EEG, and then applied statistical or machine-
learning algorithms to classify EEG features into one or more ‘states’ (e.g., fatigued/ 
not fatigued/ high mental workload/ low mental workload). Gevins et al. [7] were 
among the first to attempt to develop an online, EEG-based drowsiness detector.  
Based on automated sleep scoring research, they developed a computer program 
which did a spectral analysis on the EEG data and calculated the ratios of delta to 
alpha, and theta to alpha activity.  Calculated ratios were compared to ‘drowsiness 
threshold’ ratios previously calculated and these comparisons were used to estimate 
operator state.  Gevins et al. tested their computerized drowsiness detector on EEG 
recordings from 31 individuals and found that 84% of testing, epochs were identified 
as drowsy both by expert scorers and by the drowsiness detector. 

We consider the success of drowsiness detection to be akin to sleep staging, which 
has also been successfully performed by automated systems [8].  However, we are 
primarily concerned here with mental fatigue in awake subjects, which we define as 
the unwillingness of alert, motivated subjects to continue performing mental work [9].  
In this way, mental fatigue differs from the other factors that also impair operator 
functioning, including sleepiness, lack of motivation, monotony, lack of training, and 
physical fatigue. The most consistent finding in prior EEG studies is that mental fa-
tigue-related manipulations are associated with increased theta band power at the mid-
line frontal location (i.e., Fz) and decreased alpha band power at one or more parietal 
locations (e.g., P7 and P8) [10],[11],[12],[13],[14].  

As in other studies, we measured continuous EEG during a task, segmented the 
EEG, and analyzed the power spectral density of the segments to produce features 
that could be used to assess the effects of mental fatigue on ongoing brain activity.  
For overall tests of fatigue effects, we focused our measurements on the frontal mid-
line theta band (4-8 Hz) activity and parietal alpha band (8-13 Hz) because these 
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bands respond systematically to changes in operator state [15]. However, we used the 
power spectral density estimates at all EEG frequencies and electrodes to create algo-
rithms which accurately classify mental fatigue using single EEG epochs in individual 
subjects.  More specifically, we developed and cross-validated algorithms for classi-
fying 13-s long segments of EEG activity according to fatigue. Indeed, such classifi-
ers were highly successful, usually between 90% and 100% accurate in classifying 
EEG epochs [16],[17].  

Our initial hypothesis was that a classifier could be trained to recognize features of 
EEG recordings made during periods known to be alert or fatigued by using inde-
pendent measures of fatigue. These measures included mood estimates, performance 
and time on task. We examined the hypothesis that the application of such a classifier 
to EEG epochs from states in which the fatigue level was not known would produce 
an orderly output, with values of EEG features lying in the range between those of the 
known fatigued and alert EEG epochs used to train the classifier. Indeed the output of 
such classifiers indicated an orderly progression of classification scores from alert to 
fatigued states over time on a task known to induce fatigue [17].  

In this paper, we consider the hypothesis that transitions from alert to fatigued 
states may not be entirely smooth or continuous, much like the quasi-categorical 
stages of sleep.  To do this we examine two different feature extraction methods and 
statistical models to describe EEG features over a wide range of time, spanning from 
initial alert conditions to final fatigued conditions.  In particular we consider whether 
the distributions of classification features are more consistent with two-state or three-
state models of fatigue and alertness.  We find that in a majority of subjects, the data 
appear to be more consistent with a three-state model than a two-state model.  

2   Methods 

2.1   Summary of Methods from the Prior Study 

A detailed description of experimental and analytical methods for the prior study, 
from which the current study data were obtained, has been submitted for publication 
and is available on line [18].  Briefly, data were collected from 16 participants re-
cruited from the San Francisco Bay Area community.  The participants included 12 
males and 4 females with a mean age of 26.9 y (SD  = 7.4 y). Subjective moods were 
indexed by the Activation Deactivation Adjective Checklist (AD-ACL [19]) and the 
Visual Analogue Mood Scales (VAMS [20]). Observed behavior included ratings of 
activity and alertness from videotaped recordings of each participant’s performance.  
The performance measures were response time (RT) and response accuracy. The 
physiological measures were derived from spontaneous EEGs and EOGs.  

Participants sat in front of a computer with the right hand resting on a 4-button 
keypad and performed arithmetic summation problems, consisting of four randomly 
generated single digits, three operators, and a target sum (e.g., 4+7–5+2=8), which 
were displayed on a computer monitor continuously until the subject responded. The 
participants:  a) solved the problems, b) decided whether their ‘calculated sums’ were 
less than, equal to, or greater than the target sums provided, c) indicated their deci-
sions by pressing the appropriate key on the keypad.  The keypad buttons were  
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labeled “<,”  “=,” and “>,” respectively.  Subjects were told to answer as quickly as 
possible without sacrificing accuracy.  After a response, there was a 1 s inter-trial 
interval, during which the monitor was blank.  Participants performed the task until 
either they quit from exhaustion or 3 h had elapsed.  All participants performed the 
task for at least 90 min and eleven participants completed the maximum 3-h period. 

During the task, the EEG was recorded continuously using 32 Ag/AgCl electrodes 
embedded in a Quik-CapTM (Compumedics USA, El Paso, TX).  The reference elec-
trodes were averaged mastoids and the ground electrode was located at AFz.  Vertical 
and horizontal electrooculograms (VEOG and HEOG) were recorded using bipolar 
pairs of 10 mm Ag/AgCl electrodes (i.e., one pair above and below the left eye; an-
other pair to the right and to the left of the orbital fossi).  Impedances were maintained 
at less than 5 kΩ for EEG electrodes and less than 10 kΩ for EOG electrodes.  The 
EEG was amplified and digitized with a calibrated 64-channel SynampsTM system 
(Compumedics USA, El Paso, TX), with a gain of 1,000, sampling rate of 500 s-1 and 
a pass band of 0.1 to 100 Hz, then digitized and stored on magnetic and optical media. 

Participants: a) were given an orientation to the study, b) read and signed an in-
formed consent document, c) completed a brief demographic questionnaire (age, 
handedness, hours of sleep, etc.), d) practiced the arithmetic task for 10 minutes, and 
e) were prepared for EEG and EOG data collection.  They then completed the pretest 
self-report measures (i.e., the AD-ACL and VAMS) and performed the mental arith-
metic task until either three hours had elapsed or they were unwilling to continue.  
After the task, they completed post-test self-report measures and were debriefed. 

The EEGs were: a) submitted to an algorithm for the detection and elimination of 
eye-movement artifact, b) visually examined and blocks of data containing artifact 
were manually rejected, c) epoched around the stimulus (i.e., from –5 s pre-stimulus 
to +8 s post -stimulus), d) low pass filtered (50 Hz; zero phase shift; 12 dB/octave roll 
off), and e) submitted to an automated artifact rejection procedure (i.e., absolute volt-
ages > 100 μV).  The overall single-epoch rejection rate was 47%.  The ‘cleaned and 
filtered’ epochs were decimated to a sampling rate of 128 Hz. EEG power spectra 
were estimated with Welch’s periodogram method at 833 frequencies from 0-64 Hz. 

2.2   Prior Classification Procedures 

We classified single EEG epochs using kernel partial least squares decomposition of 
multichannel EEG spectra coupled with a discrete-output linear regression classifier 
(KPLS-DLR [21]).  Through extensive side-by-side testing of EEG data, Rosipal et al. 
found that KPLS-DLR was just as accurate as KPLS-SVC, which uses a support vec-
tor classifier for the classification step.  KPLS selects the reduced set of orthogonal 
basis vectors or “components” in the space of the input variables (EEG spectra) that 
maximizes covariance with the experimental conditions.  DLR finds the linear hyper-
plane in the space of KPLS components that separates the classes.  In a pilot study, 
and in our present data, we found that the first 15 minutes on task did not produce 
mental fatigue, whereas mental fatigue was substantial in the final 15 minutes. So we 
randomly split EEG epochs from the first and last 15-min periods into equal-sized 
training and testing partitions for classifier estimation.  Only the training partition was  
 



 EEG-Based Estimation of Mental Fatigue: Convergent Evidence 205 

used to build the final models. The number of KPLS components in the final models 
was set by five-fold cross-validation. The criterion for KPLS-DLR model selection 
was the minimum classification error rate summed over all cross-validation subsets. 

2.3   Statistical Modeling Procedures 

The first model we tested was an extension of our earlier work with the KPLS-DLR 
classifiers trained using multichannel EEG spectra to distinguish alert and fatigue 
states [16],[17]. The features of this classifier are components that linearly combine 
the set of multi-channel EEG power spectral densities and represent each EEG epoch 
with a single score, much like the components of factor analysis or principal compo-
nents analysis. The KPLS component scores of consecutive 13-s EEG epochs  
recorded during the mental arithmetic task were analyzed using Bayesian optimal 
data-based binning methods [22].  To make the problem computationally stable with 
the limited data available, we used only the scores of the first KPLS component (the 
component of greatest covariance with the fatigue states identified in the training set 
of EEG epochs).1   

 

Fig. 1. Development of optimal binning classifier for 3-state model in Subject 13. From upper 
left to lower left: Overall histogram of KPLS scores across all 15-min blocks.  Histogram and 
evidence (bar graph under histogram) for each of three states. Upper right to lower right: 
Smoothed quality of evidence for each state vs. the other two states for single EEG epochs 
spanning the entire session (time also increases from left to right).  Summed evidence provided 
by the data as a function of EEG epochs. 

                                                           
1 In prior tests, we had already found that most of the discriminatory power for mental fatigue 

lies in the first KPLS component and that often, only a single component is necessary. 
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The specific procedure involved four main steps (also illustrated in Fig. 1):  

1. First, the optimal histogram of the entire task session was computed, and this 
served to delineate the number of histogram bins, and their positions for further 
analysis.  

2. The data were then broken into blocks of 15-min duration, and optimal bins were 
computed for each block. For two-state models, a characteristic set of blocks was 
chosen as exemplars for each state: State 1 (alert) and State 3 (fatigued). For three-
state models an additional characteristic set of blocks was chosen as exemplars for 
State 2 (normal).  The set for State 2 was chosen by eye, and the first and last 
blocks were always included in the sets of blocks for States 1 and 3 respectively.  
There are ways we could automate the choice of blocks for each state in the future.   

3. Then for each set of exemplar data, another histogram-style density model was 
generated to be used as a model of the likelihood function.  Note that this is not ex-
actly a histogram, since empty bins are given some probability mass, i.e., no bin 
may have a probability of zero. We used the optimal bins derived from the KPLS 
scores and some heuristics to generate likelihood functions for either two or three 
fatigue states. We now have estimated likelihood functions for each state and we 
assume equal a priori probabilities for all states.  

4. We then computed the evidence for the two-state or three-state models from the 
sum of the likelihood functions. This describes the evidence that the data provides 
about a given state and allows for a comparison of the two- or three-state model 
fits to the data. Low evidence implies that the algorithm cannot be sure about its 
conclusions, whereas high evidence implies confidence. 

The second model we tested was an application of autoregressive or AR models 
developed independently for each EEG electrode and each single EEG epoch [23]. 
The data were grouped into the same 15-min blocks used for the optimal binning 
method.  The 13-s epochs of the EEG time series served as the input to the model 
construction procedure. This procedure consists of three main steps: 

1.  We first fit AR models to all the 13-s EEG epochs from the first and last 15-min 
blocks with the goal of extracting the frequencies that characterize alert/fatigue 
states or alert/normal/fatigue states. Fitting the AR models means that an optimal 
model order needs to be found (i.e., how many lags will be considered in the AR 
model). For each subject we chose the "optimal model order" as the one that does 
the best job in terms of correctly classifying epochs in the first and last intervals as 
epochs from alert and fatigue states, respectively. The best AR model order for a 
given individual is chosen using an optimality criterion based on which order does 
the best in terms of discriminating fatigue and alert states, i.e., discriminating be-
tween epochs from the first and final blocks in the EEG frequency range averaging 
over all the EEG channels recorded. 

2. We then proceeded to select which channels do best in terms of correctly classify-
ing alert and fatigue epochs in the first and last blocks. This was done by applying 
the k-means clustering method with two (or three) classes to all the frequencies and 
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moduli2 of the AR models fit to the EEG epochs from the 15-min blocks. Specifi-
cally, we used data from the first and last 15-min blocks and grouped them into 3 
clusters using k-means. We labeled the alert cluster as the one that had the best per-
formance in terms of classifying epochs from the first 15-min and the “fatigue 
cluster” as that that had the best performance (measured as classification accuracy). 
The remaining cluster was labeled as the normal cluster. We hypothesize that some 
epochs recorded after the first 15-min and prior to the last 15-min would belong to 
this new cluster. Then, the accuracy of this classification method is computed for 
each channel. Finally we retained only the channels that had a minimally accept-
able accuracy of X%, where X varied with the subject. Different values of X were 
considered; based on our analyses across subjects, X ∈ (60; 85) was suggested. 

3. Once the channels were selected, we ran the classifier for the remaining epochs and 
for each epoch computed the probability of fatigue and alert (or fatigue, alert, and 
normal) states using the combined information provided for the channels chosen in 
Step 2. This was done by giving the same weight to all the channels. 

3   Results 

3.1   Relevant Results in the Prior Study 

Detailed results and statistics in the prior study appear in a preceding report [18]; only 
summaries of the most relevant results will appear here. The AD-ACL data indicated 
that time on task led to decreased general activation (i.e., self-reported energy) and 
preparatory arousal (i.e., self-reported calmness) and increased general deactivation 
(i.e., self-reported tiredness).  The VAMS subscale scores (i.e., afraid, confused, sad, 
angry, energetic, tired, happy, and tense) did not significantly change with time on 
task (i.e., pretest vs. posttest), suggesting that time on task, despite its effects on acti-
vation and arousal, did not influence moods. Significant effects of time on task for 
behavioral observations indicated that there was a linear decrease in alertness and a 
linear increase in activity. Within-subjects contrasts also showed a significant linear 
increase in RT with time on task. There were no significant effects of time on task for 
response accuracy.  Our prior analysis showed that time on task was linked with pro-
gressive increases in frontal midline theta and parietal midline alpha power.   

3.2   KPLS Classification Results from the Prior Study 

We applied the KPLS-DLR classification procedure to EEG recordings from 14 of the 
16 subjects (two subjects had too few EEG epochs for model estimation).  The EEG 
epochs were synchronized with the onset of each math problem, extending from –5 s 
to +8 s relative to each stimulus onset.  We also reduced the likelihood of electromy-
ogram artifacts by low-pass filtering the EEG with either an 11-Hz or 18-Hz cutoff. 
For each subject we constructed a KPLS-DLR model using either linear or nonlinear 
kernel functions and selected the best model as described above. Classification accu-

                                                           
2 The characteristic roots of the AR model are described in terms of their frequencies and 

moduli. The amplitude of each frequency in the power spectrum is a function of the moduli. 
We fitted an AR model to each epoch and computed the roots of the characteristic AR poly-
nomial at the posterior mean of the AR coefficients. 
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racies across both classes for 18-Hz filtered EEG ranged from 91.12 to 100% 
(mean = 98.30%). The corresponding range for 11-Hz filtered EEG was 89.53 to 
98.89% (mean = 98.30%).  The number of KPLS components ranged from 1 to 4 
(mean 2.77) for 18-Hz EEG and from 1 to 5 (mean 3.76) for 11-Hz EEG.   

3.3   Optimal Binning Classification Results 

We applied the optimal binning procedure to the KPLS scores for each subject  
and compared the histograms and quality of evidence for 2-state and 3-state models 
(Fig. 1).  In every case (n=14) the evidence for the three-state model was greater than 
the evidence for the two state model (Fig. 2). 

3.4   AR Model Classification Results  

We applied the AR classifier construction method to the EEG epochs across all 15-
min blocks for each subject, comparing the model fits and classification accuracy for 
2-state and 3-state models. Subjects 2 and 14 were not included due to insufficient 
EEG epochs for the analyses. In 9 of the 12 remaining cases, a 3-state model was su-
perior to a 2-state model (Fig. 3). 

 

Fig. 2. The quality of 3-state models vs. 2-state models was gauged by the difference in the log 
of the evidence for the models.  In all subjects tested, this difference was large, ranging from 
60.8 log units for Subject 13 to 1795.3 log units for Subject 5.  Subjects are ordered 1 to 14 by 
the log evidence for their 2-state model. Subjects 7-14 had relatively high baseline evidence for 
a 2-state model. For these subjects, the range for improvement that could be obtained with a 3-
state model was more limited than for the Subjects 1-6, who had relatively less 2-state model 
evidence.  
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Fig. 3. Accuracies of 2-state and 3-state AR-model based classifiers for 12 subjects (S2 and 
S14 were omitted).  Each topographical plot depicts the accuracy of classification as a function 
of electrodes.  The overall accuracy may be controlled by exclusion of channels that do not 
meet minimal accuracy criteria. In 9 of the 12 subjects, the accuracy of the 3-state model ex-
ceeded that of the 2-state model. 

4   Discussion 

We considered the main hypothesis that EEG features drawn from a long and tiring 
mental arithmetic task are better explained by three-state models of mental fatigue 
than by two-state models. Previously, we had found that the accuracy of a two-state 
KPLS-DLR classification of single-trial EEG epochs ranged from 90% to 100% with 
a mean of 97% to 98% [18]. While the performance of these classifiers was highly 
accurate for single EEG epochs and may serve as the basis for monitoring mental fa-
tigue in operational settings, they do not fully illuminate the underlying structure of 
fatigue states over time.  In this study we found that both optimal binning methods 
and AR-model based classifiers of EEG features distinguish three distinct states:  
State 1 appears to be one of brief, but heightened alertness, being present when  
subjects were fresh, but giving way to State 2 after 15 to 45 minutes on task.  State 2 
typically lasted longer than State 1, and corresponded to the main body of time on the 
task. We provisionally consider State 2 to be a state of “normal” alertness, which is 
distinct from heightened alertness. State 2 is also distinct from State 3, which  
appeared later in the task, and overlapped with the end-state of fatigue.  

Some important implications for future studies are underscored by our results.  
First, as others have found [24],[25], EEG classification algorithms benefit greatly by 
being both individualized and multivariate.  The development of more general mod-
els, which apply to a broad set of subjects or tasks, will require considerable addi-
tional research. For example, a well-known problem in the applied EEG community is 
that the performance of classification algorithms from day to day, or at different times 
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of day is unstable [26].  Additional research is needed to develop methods for stabiliz-
ing the link between EEG features and mental states such as fatigue or alertness over 
long periods of time. Quite possibly, the delineation of discrete states of mental alert-
ness and fatigue could lead to more general and reliable classification algorithms.  For 
example, if states are marked by distinct clusters of features, as compared to a con-
tinuous variable, then we can devise normalizations of those features which preserve 
the groupings from day to day, task to task, and even subject to subject. 
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